Entri Populer

Selasa, 18 September 2012

hubungan hukum kepler dengan hukum newton

Hukum Pertama

Figure 2: Hukum Kepler pertama menempatkan Matahari di satu titik fokus edaran elips.
"Setiap planet bergerak dengan lintasan elips, Matahari berada di salah satu fokusnya."
Pada zaman Kepler, klaim di atas adalah radikal. Kepercayaan yang berlaku (terutama yang berbasis teori epicycle) adalah bahwa orbit harus didasari lingkaran sempurna. Pengamatan ini sangat penting pada saat itu karena mendukung pandangan alam semesta menurut Kopernikus. Ini tidak berarti ia kehilangan relevansi dalam konteks yang lebih modern.
Meski secara teknis elips yang tidak sama dengan lingkaran, tetapi sebagian besar planet planet mengikuti orbit yang bereksentrisitas rendah, jadi secara kasar bisa dibilang mengaproksimasi lingkaran. Jadi, kalau ditilik dari pengamatan jalan edaran planet, tidak jelas kalau orbit sebuah planet adalah elips. Namun, dari bukti perhitungan Kepler, orbit-orbit itu adalah elips, yang juga memeperbolehkan benda-benda angkasa yang jauh dari Matahari untuk memiliki orbit elips. Benda-benda angkasa ini tentunya sudah banyak dicatat oleh ahli astronomi, seperti komet dan asteroid. Sebagai contoh, Pluto, yang diamati pada akhir tahun 1930, terutama terlambat diketemukan karena bentuk orbitnya yang sangat elips dan kecil ukurannya.

Hukum Kedua

Figure 3: Illustrasi hukum Kepler kedua. Bahwa Planet bergerak lebih cepat di dekat Matahari dan lambat di jarak yang jauh. Sehingga, jumlah area adalah sama pada jangka waktu tertentu.
"Luas daerah yang disapu pada selang waktu yang sama akan selalu sama."
Secara matematis:
\frac{d}{dt}(\frac{1}{2}r^2 \dot\theta) = 0
dimana \frac{1}{2}r^2 \dot\theta adalah "areal velocity".

Hukum Ketiga

Planet yang terletak jauh dari Matahari memiliki perioda orbit yang lebih panjang dari planet yang dekat letaknya. Hukum Kepler ketiga menjabarkan hal tersebut secara kuantitatif.

"Perioda kuadrat suatu planet berbanding dengan pangkat tiga jarak rata-ratanya dari Matahari."
Secara matematis:
 {P^2} \propto  {a^3}
dengan P adalah perioda orbit planet dan a adalah sumbu semimajor orbitnya.
Konstant proporsionalitasnya adalah semua sama untuk planet yang mengedar Matahari.
\frac{P_{\rm planet}^2}{a_{\rm planet}^3} = \frac{P_{\rm earth}^2}{a_{\rm earth}^3}.

Eyang Newton juga menunjukkan bahwa Hukum III Kepler juga bisa diturunkan secara matematis dari Hukum Gravitasi Universal dan Hukum Newton tentang gerak dan gerak melingkar. Sekarang mari kita tinjau Hukum III Kepler menggunakan pendekatan eyang Newton.
Terlebih dahulu kita tinjau kasus khusus orbit lingkaran, yang merupakan kasus khusus dari orbit elips. Semoga dirimu belum melupakan Hukum Newton dan pelajaran Gerak Melingkar…
Kita tulis kembali persamaan Hukum II Newton :


Pada kasus gerak melingkar beraturan, hanya terdapat percepatan sentripetal, yang besarnya adalah :


Kita tulis kembali persamaan Hukum Gravitasi Newton :


Sekarang kita masukan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :


m1 adalah massa planet, mM adalah massa matahari, r1 adalah jarak rata-rata planet dari matahari, v1 merupakan laju rata-rata planet pada orbitnya.
Waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit adalah T1, di mana jarak tempuhnya sama dengan keliling lingkaran,2phir1. Dengan demikian, besar v1 adalah :


Kita masukan persamaan v1 ke dalam persamaan di atas :


Misalnya persamaan 1 kita turunkan untuk planet venus (planet 1). Penurunan persamaan yang sama dapar digunakan untuk planet bumi (planet kedua).


T2 dan r2 adalah periode dan jari-jari orbit planet kedua. Sekarang coba anda perhatikan persamaan 1 dan persamaan 2. Perhatikan bahwa ruas kanan kedua persamaan memiliki nilai yang sama. Dengan demikian, jika kedua persamaan ini digabungkan, akan kita peroleh :




Kita juga bisa menurunkan persamaaan untuk menghitung besarnya periode gerak planet (T) dengan cara lain. Pertama terlebih dahulu kita turunkan untuk kasus gerak melingkar.
Sebelumnya kita telah mensubtitusikan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :


Pada pembahasan mengenai gerak melingkar beraturan, kita mempelajari bahwa laju v adalah perbandingan jarak tempuh dalam satu kali putaran dengan periode (waktu yang dibutuhkan untuk melakukan satu kali putaran), yang secara matematis dirumuskan sebagai berikut :


Kita subtitusikan nilai v pada persamaan laju untuk orbit lingkaran, ke dalam persamaan T :


Pada persamaan ini tampak bahwa periode dalam orbit lingkaran sebanding dengan pangkat 3/2 dari jari-jari orbit. Eyang Newton menunjukkan bahwa hubungan ini juga berlaku untuk orbit elips, di mana jari-jari orbit lingkaran (r) diganti dengan setengah sumbu utama a




DATA ASTRONOMI

Sumber Artikel : http://www.gurumuda.com

Tidak ada komentar:

Posting Komentar